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Assignment 1

Let R(p(x),p(z)) = MSE(p(x),p(x))) = E(p(z) — p(x))? be the risk at point z. Assuming that f”
is absolutely-continuous and bounded in the vincinity of . Under these conditions:
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as n — oo and where K is a kernel that is symmetric around the y axis. A kernel is a smooth
function K : R — R such that K(z) > 0 for all z, [*_ K(z)dz =1, [ 2K (x)dz =0 and

o2 = ffooo 22K (z)dx > 0. hy, > 0 is the so-called bandwidth. One of the commonly used kernels is
the Epanechnikov kernel:

3
K(x) = 1 max(1 — 22, 0)

which is symmetric around the y axis. Let us prove equation (1). The risk R(p(z),p(x)) is the
sum of the bias Bias(p(x), p(z)) = E(p(z) — p(x)) to the 2nd power and the variance
Var(p(z) — p(x)) =Var(p(x)). The bias can then be written as follows:
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Bias(p(x), p(z)) = E[p(z) — p(z)] = E
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and the variance can be written as follows:
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as n — oo. The equality (x) is due to the fact that the kernel K is symmetric around the y axis
and, for the variance, the X;’s are independent. The equality (%) is due to the change of variables
z=(u—2)/hy & u=x+ zh, & du = hy, dz and the equality (x % *) is, because [* K(z)dz =1
and [ zK(z)dz = 0. To prove equality (+4), first notice that

Var [K (X1 — x)/hy)] = E [K? (X1 — 2)/hn)] — (E[K (X1 — 2)/hn)])? and:
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as n — 0o, since h, — 0 as n — 0. So:
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as n — oo, which ends the proof of equality (x4). The last equality is again due to the fact that
h, — 0 as n — oo.
The risk can thus be written as:

R(p(x), p(z)) = (Bias(p(z), p(x)))* + Var(p(z))
[%° K?*(x)dx
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as n — oo which completes the proof of equation (1).
The risk is optimal when the bandwidth is, which can be found as follows:
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as n — oo. This is always positive if we plug in h, = A}, because h} is positive and so is O';L{,
(p"(x))?, p(z), n and f_oooo K?2(t)dt. The last one must be true, because K is a kernel, so K > 0.
Thus the extremum A} is indeed a minimum. Now, the optimal risk is:
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for c € R as n — oo. Recall that in general f(z) = O(g(z)) as x — oo if |f(z)| < ¢|g(x)]| for
x> xq for some ¢ and xg. Since the risk and n are already positive, the risk is indeed O(n=%/%).

Assignment 2

Assume that the density p(x,y) > 0 for all (z,y) € R? and let us define h, := hy nha,. A suitable
2-dimensional kernel K (-,-) would be

K ((Xi = 2)/h1n, (Vi = y)/hon) = K (Xi —2)/hin) K ((Yi = y)/h2n) (4)

for K(-) a 1-dimensional kernel, like for example the Epanechnikov kernel mentioned in
assignment 1. Notice that p(z,y) — p(2',y) < |p(z,y) — p(2’,y')| < L(|lx — 2'| + |y — ¥/|) and so
p(z,y) < L(lx —2'| + |y — V'|) + p(2/, ¥') = pmax for some (2, y’) € R such that p(z’,y') < co and
where L, pmax € R for all (x,y) € R2, because p(z, y) satisfies the Lipschitz condition. Such a
(2',y") must exist, otherwise p(z,y) would not satisfy ffooo f_oooo p(z,y)dxdy = 1. So the variance of

p(z,y) — p(z,y) can be written as follows:
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for c3 € R. The inequality <’ is, because Var[X] = E[XQ] — (E[X])? < E[X?] for general X. The
equality (+5) is due to the change of variables s = (v — x)/h1y < =z + Shy, < du = hy ,ds
and t = (v —y)/hon © v=y+the, & dv = hy,dt.



and the Bias(p(x,y),p(x,y)) can be written as follows:
Bias(p(z, y). p(,y)) = El(p(x,y) - p(z,9))*] = E(p(z) - p())
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The equality (+6) is due to the fact that [*_ [* K(s,t)dsdt = 1. Now:

Bias(p(z,y), p(z,y)) < |Bias(p(z,y), p(z,y))| < / / K(s,t)||p(x + shipn,y + theyn) — p(x,y)|dsdt
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for ¢1,co € R. The inequality (x7) is, because p(z,y) satisfies the Lipschitz condition.
Thus the risk R(p(z,y), p(x,y) has the following upper bound:

R(p(x,y), p(x,y) = E[(p(z,y) — p(x,y))*] = (Bias(p(x,y), p(z,y)))* + Var(p(z))
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where c1, c2,c3 € R. Again, the risk is optimal when the bandwidth is. However, we only have an
upper bound of the risk, so we can only determine an optimal upper bound of the optimal risk.
Let us now choose the 2 bandwidths to be the same: hi, = hg,. So:
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This is always positive if we plug in hy, = h7 ,,, because (c1 + c2)?, n and h‘in are positive and
consequently c3 is positive. The last statement is true, because c3 = (¢ + 02)2n(h"1‘7n)4. So the



extremum hj , is indeed a minimum. Now, the optimal risk is bounded as follows:
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for d € R and so R*(p(x,y), p(x,y)) = O(n=1/?).

as n — 0o. The order is justified as before, since the risk and n are already positive. Remark that
this result does not apply when the Lipschitz condition of p(x,y) only holds for points in the
neighborhood of some point (xg,yo) instead of all points in R. The reason is that inequality (x7)
does not hold anymore.
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Assignment 3

The risk or MSE can be rewritten as follows:
MSE(p(x),p(z)) = E[(p(z) — p(x))*] = Var[p(x)] + (E[p(x) — p(z)])?
= E[(p())*] — (E[p()])* + (E[p(x)] — p(x))* = E[(p(x))*] — 2p(x) E[p(x)] + (p(x))?

Let us calculate the exact expression of E[(p(x))?] and E[p(z)]. Notice first that

p(z + zhy) = e=@H2n) if o 4 2h, >0 2> —z/h,.

Now, let m := max{—1, —z/h,} = —min{l,z/h,}, so m = —z/h, if x < h,, and m = —1 if
x > hy,. Moreover, let a = z if x < h,, and a = h,, if x > h,,, then:
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or equivalently, if x > h,,

and if z < h,,
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Now, let us determine the exact expression of E[(p(z))?]:
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Notice now that the risk or MSE derived in assignment 1 is applicable to this case, because
p’(x) = e~* is continuous and it is bounded in a neighborhood of x > 0, namely p”(x) < 1 for all

x > 0. So for this case:
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Applying these results to equation (2):

(L gy 10 1
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and applying these results to equation (3):
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as n — oo, which is the best oracle choice of the bandwidth.

Assignment 4A

Suppose the available data is (z;,3;) for i = 1,...,n where Y; € R and z; = (z;1,...,z;,)’ € RP and
consider the linear regression model:

Yi=r(x;) +e = Zﬂ]xw—kal, i=1,..,n,

where Eleg;] = 0 and Var[sz] = 02, An estimator 7, of r is called a linear smoother, if there exists a
vector £(x) = ({1(z), ..., €n(x))T for every x such that
Z li(z)Y;i & r =LY (12)

where r = (7, (21), ..., ()T, Y = (Y1, ..., Yo)T and L = (U(x1), ..., 0(z,))T = (i (@i)))fj=1-
Linear smoothers, ¢(x) to be exact, depend on a so-called bandwidth h > 0. If the bandwidth is
increased, then so is the level of smoothness. If it is too low, then it becomes undersmoothed. If it
is too high, then it becomes oversmoothed. The goal is to find just the right bandwidth. This can
be determined by minimizing the leave-one-out cross validation score:

n

where L;; is the ith diagonal element of the smoothing matrix L.

The variance 02 can be estimated by

2 _ T (Y= (ai)? )

- n—2+uv

where v = tr(L) and 7 = tr(LTL) = Y27, [|€(z)||?, as long as 7 is sufficiently smooth, v = o(n)
and 7 = o(n) as n — oo.

We will use three types of linear smoothers for the glass fragments data: regressogram,
Nadaraya-Watson kernel estimator with a standard normal kernel and local linear regression.



Regressogram

Suppose that a < x; < b for i = 1,...,n and divide [a, b] into m bins Bj, ..., By,, where

e+ -5, a+i%t), ifi<m
L INE=C ] ifi=m

Y;, z€B (15)

where k; = #(Bj). A regressogram is a linear smoother, because equation (15) can be written as

equation (12), where:

1/k;, x; € B;

) = § e D

0, €T; §é Bj
The bandwidth is the binwidth h = (b — a)/m.
The lowest Cross-Validation score for the data appears to be 7.014422 when using m = 4 bins, so
h = (b — a)/4. The variance is estimated at 6.911277. Bin sizes higher than 6 gives an infinite
score. Figure 1 plots the Cross-Validation score against the bin size and figure 2 shows the

regressogram that has the lowest score. The dotted line in figure 1 is the estimated variance for
different bin sizes.

Nadaraya-Watson kernel estimator

The Nadaraya-Watson kernel estimator is defined as equation (12) with the following weights ¢;(z):
K(252)

b(r) = 7=~ (16)
Zj:l K(=+)
where h > 0 is the bandwidth and K is a kernel. I will use the standard-normal kernel, i.e.:
1
K(z) = ——e %"/ (17)
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The lowest Cross-Validation score for the data appears to be 6.954199 when h = 0.003. The
variance is estimated at 15.02898. Bandwidths lower than A = 0.003 gives an infinite score. Figure
3 plots the Cross-Validation score against the bandwidth. Figure 4 shows the Nadaraya-Watson
kernel estimator with a standard-normel kernel that has the lowest score. Figure 7 shows the
estimated variances for different bandwidths.

Local linear regression

The local linear regression is defined as equation (12) with the following weights ¢;(z):

2 =1 bj(@)’

ti(z) = bi(x) = K ($ - ‘””) (Sna(x) = (2; — )Sn1(z),

Sn,j (@) 4

)

K(x;”C) (ri —x)Y, j=1,2
1



where h > 0 is the bandwidth and K is a kernel. I again used the standard-normal kernel.

The lowest Cross-Validation score for the data appears to be 8.432450 when h = 0.012. The
variance is estimated at 12.74935. Bandwidths lower than A = 0.012 gives an infinite score. Figure
5 plots the Cross-Validation score against the bandwidth. Figure 6 shows the local linear
regression with a standard-normel kernel that has the lowest score. Figure 8 shows the estimated
variances for different bandwidths.

Assignment 5(i)

Recall that if some variable X is N(u,0?) distributed, then (X — u)/o is N(0,1) distributed. In
particular, if some variable Z is N (0, 1) distruted, then 0Z is N(0,0?) distributed.

In general, if X is a N(0,0?) random variable, then X /o is a standard normal variable, i.e. a
N(0,1) variable. Now, 6; = 6;(Y ( ) = 0;(0,€) and we let &, be a standard normal variable, so

€ = £(02 = 1). For arbitrary o2, the risk is R(0;(0,£(02)),S) = R(6;(6, 0€, S)).

Assignment 5(ii)
Recall that if Z is a N(0, 1) variable, then 0Z + p is a N(u, o) variable. In particular, & is N(0,1)
distributed, so Y}, is N(0y,£?) distributed for all k, so E[Y}] = 6y and Var[Y}] = &2 for all k.

Suppose that A\, = 1{k < N}, ie N\, =1if Kk <N and \; = 0 otherwise. Let 05 be the projection
estimator, i.e. 0 = A\ Y} for all k. Ny, the optimal IV, can then be found as follows:

Z(Gk — ‘9k Z AkYk - ek ]
k=1

(Val“ [/\kYk] + (E9 [)\kYk - Gk])2)

A ~ 2
R(6,0) = B, He - 9H — B

M
M8

Ep [(AeYs — 01)%] =

k=1 k=1
- 2 _2 292 2 - 2 2 - 2k2ﬁ
=D M+ (- M) <N+ Y =Ne?+ ) 025
k=1 k=N-+1 k=N+1
2 2802 26302 26 _
< Ne +W Zk 02 < Ne? + ka 02 < Ne? + QN~28 =: R,,,

k=N+1
9 (28+1)
o Fus =2 —28QN"
0

o = 06 28QN "D = 2% & Ny = (26Q) /D2 B = (25Qn) 1/ @7+

since ¢ = (1/n)"/? and
62
ON?
This is always positive if we plug in N = Ny. To see this, note that n is positive and the fact that
No = (26Qn)Y/8+1) > 0. So @ and 3 must be positive, otherwise Q/(26+1) and 31/(26+1) would
not be real values and neither is Ng. We conclude that the extremum Ny is indeed a minimum.

Ry = 2B(28 + 1)QN~39+2)
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Thus 6;(No) = Yy, if k < Ny = (26Qn)Y @+ and 6,(Ny) = 0 otherwise. Now:

R(O(Ny),©) < Noe? + QNo—Qﬂ = (26Q)Y/ @A)/ 260+ =1 4 O(28Q) 20/ (26+1)~26/(26+1)
= 28(23) 2/ 2AH1 Q1/(26+1),, =26/ (26+1) | 1/(20+1) (9.3)~26/(26+1) =26/ (26+1)
= (28 + 1)(2B) 20/ (@B+1) 1/ (26+1) =26/ (26+1)

Thus R(A(Ng), ©) < Cn~28/A+1) for some C € R, so R(8(Np),0) = O(n~28/@F+1)) ag n — oo,

which is indeed the minimax convergence rate. The order is again justified, because the risk and n
are already positive. More precisely,

1 Py

€ =20+ () QP — o7 (207 + 29 ) =@ (o

(14 (29T
- e ( 257 )

while the minimax constant, or Pinkster’s constant, C* is:

28 1
* _ Oz e (L2 7T _ e (20 + 1)320° 25+
o=ty (515) ™ — e (G5 )

They are clearly not equal. So the minimax constant is not attained here.
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Assignment 5(iii)

Assuming that ~ is positive, the optimal cut-off parameter My here is determined as follows:

A 2 ass 5 (ii) -
R(6,0) = Ey SO+ (1 - ) <M+ Y 67
k=1 k=M-+1
g2 27 2 vk p2 2 vk p2
= Me" + Z 0k€7k§M€ +67M Z e, < Me +67MZG 0.
k=M-+1 k=M+1 k=1
< Me? 4+ Ce ™ = R,
9 2 —yM
a—MRup =¢e* —yCe™”
0 M 9 oy E g2
aiMRUPZO@’YCGfY = e :%@—VMZIH ’yic

My = —'In <j;) _ <m10> — Uy C) = 4 (In(n) + In(vC))

and
82
OM?
e~ "M

Ry, = v2Ce ™M

which is always positive, because 72, and C are all positive. The last statement must be
true, otherwise My would not be defined, since it would then contain the logarithm of a negative
value. So the extremum My is indeed a minimum. Thus 6, = Y}, if k < My = 4! In(nyC) and
ék = 0 otherwise. So:

R(0(My),©) < Mye? + Ce Mo — nlv In(nyC) 4+ Ce~mm©) — nl,y In(nyC) + C(nyC)~!

1 1 1 1 1
= In(nyC') + Pl (In(nyC) +1) = e (In(n) + In(vC) + 1) =~ e In(n)

if n is large enough. So R(@(Mo), 0©) = O(n~'In(n)). If n is large enough, then

n~1In(n) > n~=20/(F+1) meaning that the rate of convergence has become larger now. Thus the
optimal projection estimator is performing better here. This makes sense, because the ellipsoid £
contains an exponential power e?*, while the ellipsoid © has k%% and it is known that in general
e® > zF for all z, regardless of what k > 0 is.

Assignment 5(iv)

The optimal cut-off parameter Ly here is determined as follows:

- 2 ass 5 (ii) — 00 00
R(0,0) = Ep ST+ (- M) <L+ > =L+ > 6}
k=1 k=L+1 k=L+1
o0
< L)+ ) 16k =L + Z 2 < Le? +Z|9k| 4162
k=L+1 k=L+1 k=1

o
<L’ +B) k* + BL > =: Ry
k=1
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Note that the summation > po | k=2 is a p-series. It only converges if 2a > 1 < « > 1/2, which is
indeed the case here. Now:

%Rup =2 — 2aBL (2t
;LRUP —0 ass 5(11) Lo = (2aBn)1/(2a+1)

As we already proved in assignment 5(ii) with 8 and L instead of o and B, this is indeed a
minimum. Thus 6, = Y}, if k < Ly = (2aBn)'/(e+1) and 6, = 0 otherwise. So:

R(0(Lo),0) < Loe® + B Z k2> + BLy?®
k=1

ass:5(ii) (20 + 1)(2a)—2a/(2a+1)Bl/(26+1)n—2[3/(2ﬁ+1) B Z 20

k=1
~ (2a + 1)(204)7204/(2a+1)Bl/(2ﬁ+1)n72ﬂ/(26+1)

if n is large enough. So R(A(Lg), ©) = O(n~26/(28+1) which is the minimax convergence rate.

Assignment 6(i)

Folw) = folw) + ok (f’f - y)

h
| fo(y1) — fo(y2)|*" < <|f0(y1) fotyn) + 141 |0| By (m _hyl) . <$ 71@/2) Da—r
< [foly) = foly2)|*" + ’ZLQ: k (x ;l?ﬂ> —k (x _hyz) ‘ar

<|folyr) — folyz)|* "+ n" !

L= T —1Y2
El——| -k
z—y =yl

h h
y1 B
h

< Lilyr — yo|* "+ 6L

:Ll‘yl y2‘a r+6hr+1L

= Lily1 —y2|* " +0h"Llyr — yo|*™"

= (L1 + 6R"L) [y1 — yo|*" < Llyr — yo|*"
The first inequality <’ is due to the Cauchy-Schwarz inequality and the second inequality is,
because r = |a] = max{k € Z: k < a} and so 0 < a — r < 1. The third is due to the fact that
0] < 5hot! and the fourth is, because fy € D(«, L1) and k(u) € D(a, L). If h is small enough,
then so is LA". It is known that Ly < L. If h is small enough, then also L1 + §Lh" < L, which
explains the last inequality. This proves that indeed fy € D(«, L) for h small enough.
Proving the second statement:

(Gowesc) | =2 (i) | =2 e ()]

(
16, [ (Xama\]_ 116 (% o (ua 0 116 [,
<h252E[k ( h )]_h%? /ook < h )fe(u)du = nz ) KR el zha)dz

—0o0
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Note that fo(z) > e > 0. Then the first inequality holds, because for sufficiently small & and in a
sufficiently small neighborhood of z, fyp(x) = fo(z) + k(0)0/h > €/2 and thus fo(y) > /4.

Assignment 6(ii)

a could not be of a smaller order than h®*!, because of its definition: a = 6h**!, where § is some
known parameter.

Assignment 6(iii)

Ao(u) is a density on (—1,1) means it is a function A\ : (—1,1) — R such that fil Ao(u)du = 1.
Consequently, A\(u) is a density on (—a,a), since:

a 1 a U 1
/a)\(u)du - a/a)\o (g) du = /lAg(v)dv —1
The second last equality is due to a change of variables: v = u/a < dv = 1/adu. Now, let X ~ A,
then Y := X/a ~ \g and thus:
)\/ a ! 2
(X)\? o / VW),
AX —a AMuw)
1
a2

)
0(1)? @ [t (M) @)L (@)
(Y du = S 2o(v) / Ao(v) a? /—1 <>\0(U)> Ao(o)dv
I

o~

—~
<

=

_1 MV 2
=8 |(325) | = B [srmy)] =
The equality (#) holds, because of the same change of variables and the chain rule:
e 0 def 0 9 OXo(v) Qv 10Xo(v) 1,
Ao ( ) 8u)\ ( > ou a0 (V) = 8u)\0 (v(u)) = o ou a O aAO(U)
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