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Assignment 1

Let R(p̂(x), p(x)) = MSE(p̂(x), p(x))) = E(p̂(x)− p(x))2 be the risk at point x. Assuming that f ′′

is absolutely-continuous and bounded in the vincinity of x. Under these conditions:

R(p̂(x), p(x)) =

(
1
4
σ4

Kh4
n(p′′(x))2 + p(x)

∫∞
−∞ K2(t)dt

nhn

)
(1 + o(1)) (1)

as n →∞ and where K is a kernel that is symmetric around the y axis. A kernel is a smooth
function K : R→ R such that K(x) ≥ 0 for all x,

∫∞
−∞ K(x)dx = 1,

∫∞
−∞ xK(x)dx = 0 and

σ2
K ≡

∫∞
−∞ x2K(x)dx > 0. hn > 0 is the so-called bandwidth. One of the commonly used kernels is

the Epanechnikov kernel:

K(x) =
3
4

max(1− x2, 0)

which is symmetric around the y axis. Let us prove equation (1). The risk R(p̂(x), p(x)) is the
sum of the bias Bias(p̂(x), p(x)) = E(p̂(x)− p(x)) to the 2nd power and the variance
Var(p̂(x)− p(x)) =Var(p̂(x)). The bias can then be written as follows:

Bias(p̂(x), p(x)) = E[p̂(x)− p(x)] = E

[
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
− p(x)

]

=
1

nhn

n∑
i=1

E

[
K

(
x−Xi

hn

)]
− p(x)

(∗)
=

1
nhn

n∑
i=1

E

[
K

(
Xi − x

hn

)]
− p(x)

iid=
1

nhn
nE

[
K

(
X1 − x

hn

)]
− p(x) =

1
hn

E

[
K

(
X1 − x

hn

)]
− p(x)

=
1
hn

E

[
K

(
X1 − x

hn

)]
− p(x) =

1
hn

∫ ∞

−∞
K

(
u− x

hn

)
p(u)du− p(x)

(∗∗)
=
∫ ∞

−∞
K(z)p(x + zhn)dz − p(x) =

∫ ∞

−∞
K(z)

( ∞∑
i=0

p(i)(x)
i!

((x + zhn)− x)i

)
dz − p(x)

=
∫ ∞

−∞
K(z)

( ∞∑
i=0

p(i)(x)
i!

(zhn)i

)
dz − p(x)

= p(x)
∫ ∞

−∞
K(z)dz + p′(x)hn

∫ ∞

−∞
zK(z)dz +

1
2
h2

np′′(x)
∫ ∞

−∞
z2K(z)dz(1 + o(1))− p(x)

(∗∗∗)
=

1
2
h2

np′′(x)
∫ ∞

−∞
z2K(z)dz(1 + o(1)) =

1
2
σ2

Kh2
np′′(x)(1 + o(1))

and the variance can be written as follows:
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Var(p̂(x)) = Var

[
1

nhn

n∑
i=1

K

(
x−Xi

hn

)]
(∗)
=

1
(nhn)2

n∑
i=1

Var
[
K

(
Xi − x

hn

)]
iid=

1
(nhn)2

nVar
[
K

(
X1 − x

hn

)]
=

1
nh2

n

Var
[
K

(
X1 − x

hn

)]
(∗4)
=

1
nh2

n

hnp(x)
∫ ∞

−∞
K2(t)dt(1 + o(1)) = p(x)

∫∞
−∞ K2(t)dt

nhn
(1 + o(1))

as n →∞. The equality (∗) is due to the fact that the kernel K is symmetric around the y axis
and, for the variance, the Xi’s are independent. The equality (∗∗) is due to the change of variables
z = (u− x)/hn ⇔ u = x + zhn ⇔ du = hn dz and the equality (∗ ∗ ∗) is, because

∫∞
−∞ K(z)dz = 1

and
∫∞
−∞ zK(z)dz = 0. To prove equality (∗4), first notice that

Var [K ((X1 − x)/hn)] = E
[
K2 ((X1 − x)/hn)

]
− (E [K ((X1 − x)/hn)])2 and:

E

[
K

(
X1 − x

hn

)]
=
∫ ∞

−∞
K

(
u− x

hn

)
p(u)du

(∗∗)
=
∫ ∞

−∞
hnK(z)p(x + zhn)dz

=
∫ ∞

−∞
hnK(z)

(
p(x) + p′(x)zhn +

1
2
p′′(x)(zhn)2

)
(1 + o(1))dz = 0 (1 + o(1))

as n →∞, since hn → 0 as n →∞. So:

Var
[
K

(
X1 − x

hn

)]
= E

[
K2

(
X1 − x

hn

)]
=
∫ ∞

−∞
K2

(
u− x

hn

)
p(u)du

(∗∗)
=
∫ ∞

−∞
hnK2(z)p(x + zhn)(1 + o(1))du =

∫ ∞

−∞
hnK2(z)p(x)(1 + o(1))du

as n →∞, which ends the proof of equality (∗4). The last equality is again due to the fact that
hn → 0 as n →∞.
The risk can thus be written as:

R(p̂(x), p(x)) = (Bias(p̂(x), p(x)))2 + Var(p̂(x))

= ((
1
2
σ2

Kh2
np′′(x))2 + p(x)

∫∞
−∞ K2(x)dx

nhn
)(1 + o(1)) (2)

as n →∞ which completes the proof of equation (1).
The risk is optimal when the bandwidth is, which can be found as follows:

R(p̂(x), p(x)) =

(
1
4
σ4

Kh4
n(p′′(x))2 + p(x)

∫∞
−∞ K2(t)dt

nhn

)
(1 + o(1))

∂

∂hn
R(p̂(x), p(x)) =

(
σ4

Kh3
n(p′′(x))2 − p(x)

∫∞
−∞ K2(t)dt

nh2
n

)
(1 + o(1))

as n →∞. Now:

∂

∂hn
R(p̂(x), p(x)) = 0 ⇔ σ4

Kh3
n(p′′(x))2 − p(x)

∫∞
−∞ K2(t)dt

nh2
n

= 0

σ4
Kh3

n(p′′(x))2 = p(x)

∫∞
−∞ K2(t)dt

nh2
n

⇔ σ4
Knh5

n(p′′(x))2 = p(x)
∫ ∞

−∞
K2(t)dt

h∗n =

(
p(x)

∫∞
−∞ K2(t)dt

nσ4
K(p′′(x))2

)1/5

(3)
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and
∂2

∂h2
n

R(p̂(x), p(x)) =

(
3σ4

Kh2
n(p′′(x))2 + 2p(x)

∫∞
−∞ K2(t)dt

nh3
n

)
(1 + o(1))

as n →∞. This is always positive if we plug in hn = h∗n, because h∗n is positive and so is σ4
K ,

(p′′(x))2, p(x), n and
∫∞
−∞ K2(t)dt. The last one must be true, because K is a kernel, so K > 0.

Thus the extremum h∗n is indeed a minimum. Now, the optimal risk is:

R∗(p̂(x), p(x)) =

(
1
4
σ4

K(h∗n)4(p′′(x))2 + p(x)

∫∞
−∞ K2(t)dt

nh∗n

)
(1 + o(1))

=

(
1
4
σ4

K

(p(x))4/5(
∫∞
−∞ K2(t)dt)4/5

n4/5σ
16/5
K (p′′(x))8/5

(p′′(x))2

+p(x)

∫∞
−∞ K2(t)dt

n

n1/5σ
4/5
K (p′′(x))2/5

(p(x))1/5
(∫∞

−∞ K2(t)dt
)1/5

 (1 + o(1))

=

(
1
4

(
1
n

σKp(x)
∫ ∞

−∞
K2(t)dt(p′′(x))1/2

)4/5

+
(

1
n

p(x)
∫ ∞

−∞
K2(t)dtσK(p′′(x))1/2

)4/5
)

(1 + o(1))

= cn−4/5 = O(n−4/5)

for c ∈ R as n →∞. Recall that in general f(x) = O(g(x)) as x →∞ if |f(x)| ≤ c|g(x)| for
x > x0 for some c and x0. Since the risk and n are already positive, the risk is indeed O(n−4/5).

Assignment 2

Assume that the density p(x, y) ≥ 0 for all (x, y) ∈ R2 and let us define hn := h1,nh2,n. A suitable
2-dimensional kernel K(·, ·) would be

K ((Xi − x)/h1,n, (Yi − y)/h2,n) = K ((Xi − x)/h1,n) K ((Yi − y)/h2,n) (4)

for K(·) a 1-dimensional kernel, like for example the Epanechnikov kernel mentioned in
assignment 1. Notice that p(x, y)− p(x′, y′) ≤ |p(x, y)− p(x′, y′)| ≤ L(|x− x′|+ |y − y′|) and so
p(x, y) ≤ L(|x− x′|+ |y − y′|) + p(x′, y′) =: pmax for some (x′, y′) ∈ R such that p(x′, y′) < ∞ and
where L, pmax ∈ R for all (x, y) ∈ R2, because p(x, y) satisfies the Lipschitz condition. Such a
(x′, y′) must exist, otherwise p(x, y) would not satisfy

∫∞
−∞

∫∞
−∞ p(x, y)dxdy = 1. So the variance of

p̂(x, y)− p(x, y) can be written as follows:

Var[p̂(x, y)] = Var

[
1

nhn

n∑
i=1

K

(
Xi − x

h1,n
,
Yi − y

h2,n

)]
=

1
(nhn)2

Var

[
n∑

i=1

K

(
Xi − x

h1,n
,
Yi − y

h2,n

)]
iid=

1
(nhn)2

nVar
[
K

(
X1 − x

h1,n
,
Y1 − y

h2,n

)]
=

1
nh2

n

Var
[
K

(
X1 − x

h1,n
,
Y1 − y

h2,n

)]
≤ 1

nh2
n

E

[
K2

(
X1 − x

h1,n
,
Y1 − y

h2,n

)]
=

1
nh2

n

∫ ∞

−∞

∫ ∞

−∞
K2

(
u− x

h1,n
,
v − y

h2,n

)
p(u, v)dudv

(∗5)
=

1
nhn

∫ ∞

−∞

∫ ∞

−∞
K2(s, t)p(x + sh1,n, y + th2,n)dsdt ≤ pmax

nhn

∫ ∞

−∞

∫ ∞

−∞
K2(s, t)dsdt =

c3

nhn

for c3 ∈ R. The inequality ’≤’ is, because Var[X] = E[X2]− (E[X])2 ≤ E[X2] for general X. The
equality (∗5) is due to the change of variables s = (u− x)/h1,n ⇔ u = x + sh1,n ⇔ du = h1,n ds
and t = (v − y)/h2,n ⇔ v = y + th2,n ⇔ dv = h2,n dt.
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and the Bias(p̂(x, y), p(x, y)) can be written as follows:

Bias(p̂(x, y), p(x, y)) = E[(p̂(x, y)− p(x, y))2] = E(p̂(x)− p(x))

=
1

nhn
E

[
n∑

i=1

K

(
x−Xi

h1,n
,
y − Yi

h2,n

)]
− p(x, y)

(∗)
=

1
nhn

n∑
i=1

E

[
K

(
Xi − x

h1,n
,
Yi − y

h2,n

)]
− p(x, y)

iid=
1

nhn
nE

[
K

(
X1 − x

h1,n
,
Y1 − y

h2,n

)]
− p(x, y) =

1
hn

E

[
K

(
X1 − x

h1,n
,
Y1 − y

h2,n

)]
− p(x, y)

=
1
hn

∫ ∞

−∞

∫ ∞

−∞
K

(
u− x

h1,n
,
v − y

h2,n

)
p(u, v)dudv − p(x, y)

(∗5)
=
∫ ∞

−∞

∫ ∞

−∞
K(s, t)p(x + sh1,n, y + th2,n)dsdt− p(x, y)

(∗6)
=
∫ ∞

−∞

∫ ∞

−∞
K(s, t)(p(x + sh1,n, y + th2,n)− p(x, y))dsdt

The equality (∗6) is due to the fact that
∫∞
−∞

∫∞
−∞ K(s, t)dsdt = 1. Now:

Bias(p̂(x, y), p(x, y)) ≤ |Bias(p̂(x, y), p(x, y))| ≤
∫ ∞

−∞

∫ ∞

−∞
|K(s, t)||p(x + sh1,n, y + th2,n)− p(x, y)|dsdt

(∗7)

≤
∫ ∞

−∞

∫ ∞

−∞
|K(s, t)|L(|sh1,n|+ |th2,n|)dsdt =

∫ ∞

−∞
|K(s)|L|sh1,n|ds +

∫ ∞

−∞
|K(t)|L|th2,n|dt

= c1h1,n + c2h2,n

for c1, c2 ∈ R. The inequality (∗7) is, because p(x, y) satisfies the Lipschitz condition.
Thus the risk R(p̂(x, y), p(x, y) has the following upper bound:

R(p̂(x, y), p(x, y) = E[(p̂(x, y)− p(x, y))2] = (Bias(p̂(x, y), p(x, y)))2 + Var(p̂(x))

≤ (c1h1,n + c2h2,n)2 +
c3

nh1,nh2,n

where c1, c2, c3 ∈ R. Again, the risk is optimal when the bandwidth is. However, we only have an
upper bound of the risk, so we can only determine an optimal upper bound of the optimal risk.
Let us now choose the 2 bandwidths to be the same: h1,n = h2,n. So:

R(p̂(x, y), p(x, y)) ≤ (c1 + c2)2h2
1,n +

c3

nh2
1,n

=: Rup

Now:
∂Rup

∂h1,n
= 2(c1 + c2)2h1,n −

2c3

nh3
1,n

∂Rup

∂h1,n
= 0 ⇔ 2(c1 + c2)2nh4

1,n = 2c3

h∗1,n =
(

c3

(c1 + c2)2n

)1/4

and
∂2

∂h2
1,n

Rup = 2(c1 + c2)2 +
6c3

nh4
1,n

This is always positive if we plug in h1,n = h∗1,n, because (c1 + c2)2, n and h4
1,n are positive and

consequently c3 is positive. The last statement is true, because c3 = (c1 + c2)2n(h∗1,n)4. So the
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extremum h∗1,n is indeed a minimum. Now, the optimal risk is bounded as follows:

R∗(p̂(x, y), p(x, y)) ≤ R∗
up = (c1 + c2)2

c
1/2
3

(c1 + c2)n1/2
+

c3

n

(c1 + c2)n1/2

c
1/2
3

=
(c1 + c2)c

1/2
3

n1/2
+

c
1/2
3 (c1 + c2)

n1/2
= dn−1/2

for d ∈ R and so R∗(p̂(x, y), p(x, y)) = O(n−1/2).
as n →∞. The order is justified as before, since the risk and n are already positive. Remark that
this result does not apply when the Lipschitz condition of p(x, y) only holds for points in the
neighborhood of some point (x0, y0) instead of all points in R. The reason is that inequality (∗7)
does not hold anymore.

Assignment 3

The risk or MSE can be rewritten as follows:

MSE(p̂(x), p(x)) = E[(p̂(x)− p(x))2] = Var[p̂(x)] + (E[p̂(x)− p(x)])2

= E[(p̂(x))2]− (E[p̂(x)])2 + (E[p̂(x)]− p(x))2 = E[(p̂(x))2]− 2p(x)E[p̂(x)] + (p(x))2

Let us calculate the exact expression of E[(p̂(x))2] and E[p̂(x)]. Notice first that
p(x + zhn) = e−(x+zhn) if x + zhn ≥ 0 ⇔ z ≥ −x/hn.
Now, let m := max{−1,−x/hn} = −min{1, x/hn}, so m = −x/hn if x ≤ hn and m = −1 if
x > hn. Moreover, let a = x if x ≤ hn and a = hn if x > hn, then:

E[p̂(x)] = E

[
1

nhn

n∑
i=1

K

(
x−Xi

hn

)]
=

1
nhn

n∑
i=1

E

[
K

(
Xi − x

hn

)]
iid=

1
hn

E

[
K

(
X1 − x

hn

)]
=

1
hn

∫ ∞

−∞
K

(
u− x

hn

)
p(u)du =

∫ ∞

−∞
K(z)p(x + zhn)dz =

3
4

∫ 1

m
(1− z2)e−(x+zhn)dz

=
3
4

∫ 1

m
e−(x+zhn)dz − 3

4

∫ 1

m
z2e−(x+zhn)dz =

3
4
e−x

(∫ 1

m
e−zhndz −

∫ 1

m
z2e−zhndz

)
and ∫ 1

m
e−zhndz =

[
− 1

hn
e−zhn

]1

z=m

=
1
hn

(ea − e−hn) (5)∫ 1

m
ze−zhndz =

[
− 1

hn
ze−zhn

]1

z=m

+
1
hn

∫ 1

m
e−zhn

(5)
=

1
hn

(
mea − e−hn

)
+

1
h2

n

(ea − e−hn) (6)∫ 1

m
z2e−zhndz =

[
− 1

hn
z2e−zhndz

]1

m

+
2
hn

∫ 1

m
ze−zhndz

(6)
=

1
hn

(
m2ea − e−hn

)
+

2
h2

n

(
mea − e−hn

)
+

2
h3

n

(ea − e−hn) (7)

So:

E[p̂(x)] =
3
4
e−x

(
1
hn

(
ea − e−hn

)
− 1

hn

(
m2ea − e−hn

)
− 2

h2
n

(
mea − e−hn

)
− 2

h3
n

(
ea − e−hn

))
(8)
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or equivalently, if x > hn

E[p̂(x)] =
3
4
e−x

(
2
h2

n

(
ehn + e−hn

)
− 2

h3
n

(
ehn − e−hn

))
and if x ≤ hn

E[p̂(x)] =
3
4
e−x

(
1
hn

(
ex − e−hn

)
− 1

hn

(
x2

h2
n

ex − e−hn

)
+

2
h2

n

(
x

hn
ex + e−hn

)
− 2

h3
n

(
ex − e−hn

))
Now, let us determine the exact expression of E[(p̂(x))2]:

E[(p̂(x))2] =
∫ ∞

−∞
K2(z)p(x + zhn)dz =

3
4

∫ 1

m
(1− z2)2e−(x+zhn)dz =

3
4
e−x

∫ 1

m
(1− z2)2e−zhndz

=
3
4
e−x

([
− 1

hn
(1− z2)2e−zhn

]1

m

−
∫ 1

m

4
hn

z(1− z2)e−zhn

)

=
3
4
e−x

(
1
hn

(1−m2)2e−mhn −
∫ 1

m

4
hn

ze−zhndz +
∫ 1

m

4
hn

z3e−zhndz

)
and ∫ 1

m
z3e−zhndz =

[
− 1

hn
z3e−zhn

]1

m

+
3
hn

∫ 1

m
z2e−zhndz

(7)
=

1
hn

(
m3ea − e−hn

)
+

3
hn

(
1
hn

(
m2ea − e−hn

)
+

2
h2

n

(
mea − e−hn

)
+

2
h3

n

(ea − e−hn)
)

(9)

So:

E[(p̂(x))2] =
3
4
e−x

(
1
hn

(1−m2)2e−mhn −
∫ 1

m

4
hn

ze−zhndz +
∫ 1

m

4
hn

z3e−zhndz

)
=

3
4
e−x

(
1
hn

(1−m2)2e−mhn − 4
hn

(
1
hn

(mea − e−hn) +
1
hn

(ea − e−hn)
)

+
4
hn

(
1
hn

(
m3ea − e−hn

)
(10)

+
3
hn

(
1
hn

(
m2ea − e−hn

)
+

2
h2

n

(
mea − e−hn

)
+

2
h3

n

(ea − e−hn)
)))

Notice now that the risk or MSE derived in assignment 1 is applicable to this case, because
p′′(x) = e−x is continuous and it is bounded in a neighborhood of x ≥ 0, namely p′′(x) ≤ 1 for all
x ≥ 0. So for this case:

σ2
K =

∫ 1

−1
x2K(x)dx =

3
4

∫ 1

−1
x2(1− x2)dx =

3
4

(∫ 1

−1
x2dx−

∫ 1

−1
x4dx

)
=

3
4

([
1
3
x3

]1

−1

−
[
1
5
x5

]1

−1

)
=

3
4

(
2
3
− 2

5

)
=

1
5∫ ∞

−∞
K2(x)dx =

∫ 1

−1
(1− x2)2dx =

∫ 1

−1
(1− 2x2 + x4)dx =

[
x− 2

3
x3 +

1
5
x5

]1

−1

= 2
(

1− 2
3

+
1
5

)
=

16
15
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Applying these results to equation (2):

R(p̂(x)− p(x)) =

(
1
4
σ4

Kh4
n(p′′(x))2 + p(x)

∫∞
−∞ K2(t)dt

nhn

)
(1 + o(1))

=
(

1
100

h4
ne−2x + e−x 16

15
1

nhn

)
1[0,+∞)(x)(1 + o(1))

and applying these results to equation (3):

h∗n =

(
p(x)

∫∞
−∞ K2(t)dt

nσ4
K(p′′(x))2

)1/5

=
(

16/15e−x

1/25ne−2x

)1/5

=
(

80
3

1
n

ex

)1/5

= (80/3)1/5n−1/5ex/5 (11)

as n →∞, which is the best oracle choice of the bandwidth.

Assignment 4A

Suppose the available data is (xi, yi) for i = 1, ..., n where Yi ∈ R and xi = (xi1, ..., xip)T ∈ Rp and
consider the linear regression model:

Yi = r(xi) + εi =
p∑

i=1

βjxij + εi, i = 1, ..., n,

where E[εi] = 0 and Var[εi] = σ2. An estimator r̂n of r is called a linear smoother, if there exists a
vector `(x) = (`1(x), ..., `n(x))T for every x such that

r̂n(x) =
n∑

i=1

`i(x)Yi ⇔ r = LY (12)

where r = (r̂n(x1), ..., r̂n(xn))T , Y = (Y1, ..., Yn)T and L = (`(x1), ..., `(xn))T = (`j(xi)))n
i,j=1.

Linear smoothers, `(x) to be exact, depend on a so-called bandwidth h > 0. If the bandwidth is
increased, then so is the level of smoothness. If it is too low, then it becomes undersmoothed. If it
is too high, then it becomes oversmoothed. The goal is to find just the right bandwidth. This can
be determined by minimizing the leave-one-out cross validation score:

R̂(h) =
1
n

n∑
i=1

(
Yi − r̂n(xi)

1− Lii

)2

(13)

where Lii is the ith diagonal element of the smoothing matrix L.
The variance σ2 can be estimated by

σ̂2 =
∑n

i=1(Yi − r̂(xi))2

n− 2ν + ν̃
(14)

where ν = tr(L) and ν̃ = tr(LT L) =
∑n

i=1 ‖`(xi)‖2, as long as r is sufficiently smooth, ν = o(n)
and ν̃ = o(n) as n →∞.

We will use three types of linear smoothers for the glass fragments data: regressogram,
Nadaraya-Watson kernel estimator with a standard normal kernel and local linear regression.
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Regressogram

Suppose that a ≤ xi ≤ b for i = 1, ..., n and divide [a, b] into m bins B1, ..., Bm, where

Bi =

{
[a + (i− 1) b−a

m , a + i b−a
m ), if i < m

[a + (m− 1) b−a
m , b], if i = m

A regressogram r̂n is defined as follows:

r̂n(x) =
1
kj

∑
i: xi∈Bj

Yi, x ∈ Bj (15)

where kj = #(Bj). A regressogram is a linear smoother, because equation (15) can be written as
equation (12), where:

`i(x) =

{
1/kj , xi ∈ Bj

0, xi /∈ Bj

The bandwidth is the binwidth h = (b− a)/m.
The lowest Cross-Validation score for the data appears to be 7.014422 when using m = 4 bins, so
h = (b− a)/4. The variance is estimated at 6.911277. Bin sizes higher than 6 gives an infinite
score. Figure 1 plots the Cross-Validation score against the bin size and figure 2 shows the
regressogram that has the lowest score. The dotted line in figure 1 is the estimated variance for
different bin sizes.

Nadaraya-Watson kernel estimator

The Nadaraya-Watson kernel estimator is defined as equation (12) with the following weights `i(x):

`i(x) =
K(x−xi

h )∑n
j=1 K(x−xj

h )
(16)

where h > 0 is the bandwidth and K is a kernel. I will use the standard-normal kernel, i.e.:

K(x) =
1√
2Π

e−x2/2 (17)

The lowest Cross-Validation score for the data appears to be 6.954199 when h = 0.003. The
variance is estimated at 15.02898. Bandwidths lower than h = 0.003 gives an infinite score. Figure
3 plots the Cross-Validation score against the bandwidth. Figure 4 shows the Nadaraya-Watson
kernel estimator with a standard-normel kernel that has the lowest score. Figure 7 shows the
estimated variances for different bandwidths.

Local linear regression

The local linear regression is defined as equation (12) with the following weights `i(x):

`i(x) =
bi(x)∑n

j=1 bj(x)
, bi(x) = K

(
xi − x

h

)
(Sn,2(x)− (xi − x)Sn,1(x),

Sn,j(x) =
n∑

i−1

K

(
xi − x

h

)
(xi − x)j , j = 1, 2

8



where h > 0 is the bandwidth and K is a kernel. I again used the standard-normal kernel.

The lowest Cross-Validation score for the data appears to be 8.432450 when h = 0.012. The
variance is estimated at 12.74935. Bandwidths lower than h = 0.012 gives an infinite score. Figure
5 plots the Cross-Validation score against the bandwidth. Figure 6 shows the local linear
regression with a standard-normel kernel that has the lowest score. Figure 8 shows the estimated
variances for different bandwidths.

Assignment 5(i)

Recall that if some variable X is N(µ, σ2) distributed, then (X − µ)/σ is N(0, 1) distributed. In
particular, if some variable Z is N(0, 1) distruted, then σZ is N(0, σ2) distributed.
In general, if X is a N(0, σ2) random variable, then X/σ is a standard normal variable, i.e. a
N(0, 1) variable. Now, θ̂i = θ̂i(Y ) = θ̂i(θ, ξ) and we let ξ, be a standard normal variable, so
ξ = ξ(σ2 = 1). For arbitrary σ2, the risk is R(θ̂i(θ, ξ(σ2)), S) = R(θ̂i(θ, σξ, S)).

Assignment 5(ii)

Recall that if Z is a N(0, 1) variable, then σZ + µ is a N(µ, σ) variable. In particular, ξk is N(0, 1)
distributed, so Yk is N(θk, ε

2) distributed for all k, so E[Yk] = θk and Var[Yk] = ε2 for all k.
Suppose that λk = 1{k ≤ N}, i.e. λk = 1 if k ≤ N and λk = 0 otherwise. Let θ̂k be the projection
estimator, i.e. θ̂k = λkYk for all k. N0, the optimal N , can then be found as follows:

R(θ̂, Θ) = Eθ

∥∥∥θ̂ − θ
∥∥∥2

= Eθ

[ ∞∑
k=1

(θ̂k − θk)2
]

= Eθ

[ ∞∑
k=1

(λkYk − θk)2
]

=
∞∑

k=1

Eθ

[
(λkYk − θk)2

]
=

∞∑
k=1

(
Var [λkYk] + (Eθ [λkYk − θk])

2
)

=
∞∑

k=1

(λ2
kε

2 + (1− λk)2θ2
k) ≤ Nε2 +

∞∑
k=N+1

θ2
k = Nε2 +

∞∑
k=N+1

θ2
k

k2β

k2β

≤ Nε2 +
1

N2β

∞∑
k=N+1

k2βθ2
k ≤ Nε2 +

1
N2β

∞∑
k=1

k2βθ2
k ≤ Nε2 + QN−2β =: Rup

∂

∂N
Rup = ε2 − 2βQN−(2β+1)

∂

∂N
Rup = 0 ⇔ 2βQN−(2β+1) = ε2 ⇔ N0 = (2βQ)1/(2β+1)ε−2/(2β+1) = (2βQn)1/(2β+1)

since ε = (1/n)1/2 and
∂2

∂N2
Rup = 2β(2β + 1)QN−(2β+2)

This is always positive if we plug in N = N0. To see this, note that n is positive and the fact that
N0 = (2βQn)1/(2β+1) > 0. So Q and β must be positive, otherwise Q1/(2β+1) and β1/(2β+1) would
not be real values and neither is N0. We conclude that the extremum N0 is indeed a minimum.
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Figure 1: Cross-Validation scores of regresso-
grams for different bin sizes.

Figure 2: Regressogram with optimal bin size m =
4.

Figure 3: Cross-Validation scores of kernel esti-
mator for different bandwidths.

Figure 4: Kernel estimator with optimal band-
width h = 0.003.

Figure 5: Cross-Validation scores of local linear
regression for different bandwidths.

Figure 6: Local linear regression with optimal
bandwidth h = 0.012.
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Figure 7: Estimated variances of kernel estimator
for different bandwidths.

Figure 8: Estimated variances of local linear re-
gression for different bandwidths.

Thus θ̂k(N0) = Yk if k ≤ N0 = (2βQn)1/(2β+1) and θ̂k(N0) = 0 otherwise. Now:

R(θ̂(N0),Θ) ≤ N0ε
2 + QN−2β

0 = (2βQ)1/(2β+1)n1/(2β+1)n−1 + Q(2βQ)−2β/(2β+1)n−2β/(2β+1)

= 2β(2β)−2β/(2β+1)Q1/(2β+1)n−2β/(2β+1) + Q1/(2β+1)(2β)−2β/(2β+1)n−2β/(2β+1)

= (2β + 1)(2β)−2β/(2β+1)Q1/(2β+1)n−2β/(2β+1)

Thus R(θ̂(N0),Θ) ≤ C̃n−2β/(2β+1) for some C̃ ∈ R, so R(θ̂(N0),Θ) = O(n−2β/(2β+1)) as n →∞,
which is indeed the minimax convergence rate. The order is again justified, because the risk and n
are already positive. More precisely,

C̃ = (2β + 1)(2β)−
2β

2β+1 Q
1

2β+1 = Q
1

2β+1

(
(2β)

1
2β+1 + (2β)−

2β
2β+1

)
= Q

1
2β+1

(
1

(2β)2β
+ 2β

) 1
2β+1

= Q
1

2β+1

(
1 + (2β)2β+1

(2β)2β

) 1
2β+1

while the minimax constant, or Pinkster’s constant, C∗ is:

C∗ = Q
1

2β+1 (2β + 1)
1

2β+1

(
β

β + 1

) 2β
2β+1

= Q
1

2β+1

(
(2β + 1)β2β

(β + 1)2β

) 1
2β+1

They are clearly not equal. So the minimax constant is not attained here.
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Assignment 5(iii)

Assuming that γ is positive, the optimal cut-off parameter M0 here is determined as follows:

R(θ̂, Θ) = Eθ

∥∥∥θ̂ − θ
∥∥∥2 ass 5(ii)

=
∞∑

k=1

(λ2
kε

2 + (1− λk)2θ2
k) ≤ Mε2 +

∞∑
k=M+1

θ2
k

= Mε2 +
∞∑

k=M+1

θ2
k

eγk

eγk
≤ Mε2 +

1
eγM

∞∑
k=M+1

eγkθ2
k ≤ Mε2 +

1
eγM

∞∑
k=1

eγkθ2
k

≤ Mε2 + Ce−γM =: Rup

∂

∂M
Rup = ε2 − γCe−γM

∂

∂M
Rup = 0 ⇔ γCe−γM = ε2 ⇔ e−γM =

ε2

γC
⇔ −γM = ln

(
ε2

γC

)
M0 = −γ−1 ln

(
ε2

γC

)
= −γ−1 ln

(
1

nγC

)
= γ−1 ln(nγC) = γ−1(ln(n) + ln(γC))

and
∂2

∂M2
Rup = γ2Ce−γM

which is always positive, because γ2, e−γM and C are all positive. The last statement must be
true, otherwise M0 would not be defined, since it would then contain the logarithm of a negative
value. So the extremum M0 is indeed a minimum. Thus θ̂k = Yk if k ≤ M0 = γ−1 ln(nγC) and
θ̂k = 0 otherwise. So:

R(θ̂(M0),Θ) ≤ M0ε
2 + Ce−γM0 =

1
nγ

ln(nγC) + Ce−ln(nγC) =
1

nγ
ln(nγC) + C(nγC)−1

=
1

nγ
ln(nγC) +

1
nγ

=
1

nγ
(ln(nγC) + 1) =

1
nγ

(ln(n) + ln(γC) + 1) ≈ 1
nγ

ln(n)

if n is large enough. So R( ˆθ(M0),Θ) = O(n−1 ln(n)). If n is large enough, then
n−1 ln(n) > n−2β/(β+1), meaning that the rate of convergence has become larger now. Thus the
optimal projection estimator is performing better here. This makes sense, because the ellipsoid E
contains an exponential power eγk, while the ellipsoid Θ has k2β and it is known that in general
ex > xk for all x, regardless of what k > 0 is.

Assignment 5(iv)

The optimal cut-off parameter L0 here is determined as follows:

R(θ̂, Θ) = Eθ

∥∥∥θ̂ − θ
∥∥∥2 ass 5(ii)

=
∞∑

k=1

(λ2
kε

2 + (1− λk)2θ2
k) ≤ Lε2 +

∞∑
k=L+1

θ2
k =

∣∣∣∣∣Lε2 +
∞∑

k=L+1

θ2
k

∣∣∣∣∣
≤
∣∣Lε2

∣∣+ ∞∑
k=L+1

|θk|2 = Lε2 +
∞∑

k=L+1

|θk|2 ≤ Lε2 +
∞∑

k=1

|θk|2 + |θL|2

≤ Lε2 + B
∞∑

k=1

k−2α + BL−2α =: Rup
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Note that the summation
∑∞

k=1 k−2α is a p-series. It only converges if 2α > 1 ⇔ α > 1/2, which is
indeed the case here. Now:

∂

∂L
Rup = ε2 − 2αBL−(2α+1)

∂

∂L
Rup = 0

ass 5(ii)
⇔ L0 = (2αBn)1/(2α+1)

As we already proved in assignment 5(ii) with β and L instead of α and B, this is indeed a
minimum. Thus θ̂k = Yk if k ≤ L0 = (2αBn)1/(2α+1) and θ̂k = 0 otherwise. So:

R(θ̂(L0),Θ) ≤ L0ε
2 + B

∞∑
k=1

k−2α + BL−2α
0

ass 5(ii)
= (2α + 1)(2α)−2α/(2α+1)B1/(2β+1)n−2β/(2β+1) + B

∞∑
k=1

k−2α

≈ (2α + 1)(2α)−2α/(2α+1)B1/(2β+1)n−2β/(2β+1)

if n is large enough. So R(θ̂(L0),Θ) = O(n−2β/(2β+1)), which is the minimax convergence rate.

Assignment 6(i)

fθ(y) = f0(y) +
θ

h
k

(
x− y

h

)
|fθ(y1)− fθ(y2)|α−r ≤

(
|f0(y1)− f0(y2)|+

|θ|
h

∣∣∣∣k(x− y1

h

)
− k

(
x− y2

h

)∣∣∣∣)α−r

≤ |f0(y1)− f0(y2)|α−r +
|θ|α−r

hα−r

∣∣∣∣k(x− y1

h

)
− k

(
x− y2

h

)∣∣∣∣α−r

≤ |f0(y1)− f0(y2)|α−r + δhr+1

∣∣∣∣k(x− y1

h

)
− k

(
x− y2

h

)∣∣∣∣
≤ L1|y1 − y2|α−r + δhr+1L

∣∣∣∣x− y1

h
− x− y2

h

∣∣∣∣α−r

= L1|y1 − y2|α−r + δhr+1L

∣∣∣∣y2 − y1

h

∣∣∣∣α−r

= L1|y1 − y2|α−r + δhrL |y1 − y2|α−r

= (L1 + δhrL) |y1 − y2|α−r ≤ L|y1 − y2|α−r

The first inequality ’≤’ is due to the Cauchy-Schwarz inequality and the second inequality is,
because r = bαc = max{k ∈ Z : k < α} and so 0 < α− r ≤ 1. The third is due to the fact that
|θ| ≤ δhα+1 and the fourth is, because f0 ∈ D(α, L1) and k(u) ∈ D(α, L). If h is small enough,
then so is δLhr. It is known that L1 < L. If h is small enough, then also L1 + δLhr < L, which
explains the last inequality. This proves that indeed fθ ∈ D(α, L) for h small enough.

Proving the second statement:

I(θ) = Efθ

[(
∂

∂θ
log f(X1)

)2
]

= Efθ

[(
1

f(X1)
∂

∂θ
f(X1)

)2
]

= Efθ

[
1

f2(X1)
1
h2

k2

(
X1 − x

h

)]
<

1
h2

16
ε2

E

[
k2

(
X1 − x

h

)]
=

1
h2

16
ε2

∫ ∞

−∞
k2

(
u− x

h

)
fθ(u)du

(∗∗)
=

1
h

16
ε2

∫ ∞

−∞
k2(z)fθ(x + zhn)dz

≤ 1
h

16
ε2

fmax

∫ ∞

−∞
k2(z)dz =

C1

h
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Note that f0(x) ≥ ε > 0. Then the first inequality holds, because for sufficiently small h and in a
sufficiently small neighborhood of x, fθ(x) = f0(x) + k(0)θ/h > ε/2 and thus fθ(y) > ε/4.

Assignment 6(ii)

a could not be of a smaller order than hα+1, because of its definition: a = δhα+1, where δ is some
known parameter.

Assignment 6(iii)

λ0(u) is a density on (−1, 1) means it is a function λ0 : (−1, 1) → R such that
∫ 1
−1 λ0(u)du = 1.

Consequently, λ(u) is a density on (−a, a), since:∫ a

−a
λ(u)du =

1
a

∫ a

−a
λ0

(u

a

)
du =

∫ 1

−1
λ0(v)dv = 1

The second last equality is due to a change of variables: v = u/a ⇔ dv = 1/a du. Now, let X ∼ λ,
then Y := X/a ∼ λ0 and thus:

I(λ) = E
[(

(log λ(X))′
)2] = E

[(
λ′(X)
λ(X)

)2
]

=
∫ a

−a

(
λ′(u)
λ(u)

)2

λ(u)du =
∫ a

−a

(λ′(u))2

λ(u)
du

=
∫ a

−a

( 1
a λ′0(

u
a ))2

1
aλ0(u

a )
du

(#)
=
∫ 1

−1

( 1
a2 λ′0(v))2
1
aλ0(v)

adv =
1
a2

∫ 1

−1

(λ′0(v))2

λ0(v)
dv =

1
a2

∫ 1

−1

(
λ′0(v)
λ0(v)

)2

λ0(v)dv

=
1
a2

E

[(
λ′0(Y )
λ0(Y )

)2
]

=
1
a2

E
[(

(log λ0(Y ))′
)2] =

I0

a2

The equality (#) holds, because of the same change of variables and the chain rule:

λ′0

(u

a

)
=

∂

∂u
λ0

(u

a

)
def
=

∂

∂u
λ0 (v) =

∂

∂u
λ0 (v(u)) =

∂λ0(v)
∂v

∂v

∂u
=

1
a

∂λ0(v)
∂v

=
1
a
λ′0(v)

14


